Selamat Datang

Selamat datang di Jendela Science tempat anda mencari pengetahuan

Rabu, 03 November 2010

Lempeng Tektonik




Bagian luar interior bumi dibagi menjadi litosfer dan astenosfer berdasarkan perbedaan mekanis dan cara terjadinya perpindahan panas. Litosfer lebih dingin dan kaku, sedangkan astenosfer lebih panas dan secara mekanik lemah. Selain itu, litosfer kehilangan panasnya melalui proses konduksi, sedangkan astenosfer juga memindahkan panas melalui konveksi dan memiliki gradien suhu yang hampir adiabatik. Litosfer sendiri mencakup kerak dan juga sebagian dari mantel. Suatu bagian mantel bisa saja menjadi bagian dari litosfer atau astenosfer pada waktu yang berbeda, tergantung dari suhu, tekanan, dan kekuatan gesernya. Prinsip kunci lempeng tektonik adalah bahwa litosfer terpisah menjadi lempeng-lempeng tektonik yang berbeda-beda. Lempeng ini bergerak menumpang di atas astenosfer yang mempunyai viskoelastisitas sehingga bersifat seperti fluida. Pergerakan lempeng biasanya bisa mencapai 10-40 mm/a hingga mencapai 160 mm/a.

Lempeng-lempeng ini tebalnya sekitar 100 km dan terdiri atas mantel litosferik yang di atasnya dilapisi dengan hamparan salah satu dari dua jenis material kerak. Yang pertama adalah kerak samudera atau yang sering disebut dengan "sima", gabungan dari silikon dan magnesium. Jenis yang kedua yaitu kerak benua yang sering disebut "sial", gabungan dari silikon dan aluminium. Kedua jenis kerak ini berbeda dari segi ketebalan di mana kerak benua memiliki ketebalan yang jauh lebih tinggi dibandingkan dengan kerak samudera. Ketebalan kerak benua mencapai 30-50 km sedangkan kerak samudera hanya 5-10 km.

Dua lempeng akan bertemu di sepanjang batas lempeng, yaitu daerah di mana aktivitas geologis umumnya terjadi seperti gempa bumi dan pembentukan kenampakan topografis seperti gunung, gunung berapi, dan palung samudera. Lempeng tektonik bisa merupakan kerak benua atau samudera, tetapi biasanya satu lempeng terdiri atas keduanya. Misalnya, Lempeng Afrika mencakup benua itu sendiri dan sebagian dasar Samudera Atlantik dan Hindia. Perbedaan antara kerak benua dan samudera ialah berdasarkan kepadatan material pembentuknya. Kerak samudera lebih padat daripada kerak benua dikarenakan perbedaan perbandingan jumlah berbagai elemen, khususnya silikon. Kerak samudera lebih padat karena komposisinya yang mengandung lebih sedikit silikon dan lebih banyak materi yang berat. Kerak samudera umumnya berada di bawah permukaan laut seperti sebagian besar Lempeng Pasifik, sedangkan kerak benua timbul ke atas permukaan laut, mengikuti sebuah prinsip yang dikenal dengan isostasi.

Jenis-jenis Batas Lempeng



Ada tiga jenis batas lempeng yang berbeda dari cara lempengan tersebut bergerak relatif terhadap satu sama lain. Tiga jenis ini masing-masing berhubungan dengan fenomena yang berbeda di permukaan. Tiga jenis batas lempeng tersebut adalah:

1. Batas transform

Terjadi jika lempeng bergerak dan mengalami gesekan satu sama lain secara menyamping di sepanjang sesar transform. Gerakan relatif kedua lempeng bisa sinistral (ke kiri di sisi yang berlawanan dengan pengamat) ataupun dekstral (ke kanan di sisi yang berlawanan dengan pengamat). Contoh sesar jenis ini adalah Sesar San Andreas di California.

2. Batas divergen/konstruktif

Terjadi ketika dua lempeng bergerak menjauh satu sama lain. Mid-oceanic ridge dan zona retakan yang aktif adalah contoh batas divergen.

3. Batas konvergen/destruktif

Terjadi jika dua lempeng bergesekan mendekati satu sama lain sehingga membentuk zona subduksi jika salah satu lempeng bergerak di bawah yang lain, atau tabrakan benua jika kedua lempeng mengandung kerak benua. Palung laut yang dalam biasanya berada di zona subduksi, di mana potongan lempeng yang terhunjam mengandung banyak bersifat hidrat (mengandung air), sehingga kandungan air ini dilepaskan saat pemanasan terjadi bercampur dengan mantel dan menyebabkan pencairan sehingga menyebabkan aktivitas vulkanik. Contoh kasus ini dapat kita lihat di Pegunungan Andes di Amerika Selatan dan busur pulau Jepang.

Penyebab Pergerakan Lempeng Tektonik

Pergerakan lempeng tektonik bisa terjadi karena kepadatan relatif litosfer samudera dan karakter astenosfer yang relatif lemah. Pelepasan panas dari mantel telah didapati sebagai sumber asli dari energi yang menggerakkan tektonik lempeng. Meskipun begitu terdapat pandangan lain yang telah disetujui meski masih diperdebatkan, bahwa kelebihan kepadatan litosfer samudera yang membuatnya menyusup ke bawah di zona subduksi adalah sumber terkuat pergerakan lempeng. Pada waktu pembentukannya di mid ocean ridge, litosfer samudera pada mulanya memiliki kepadatan yang lebih rendah dari astenosfer di sekitarnya, tetapi kepadatan ini meningkat seiring dengan penuaan karena terjadinya pendinginan dan penebalan. Besarnya kepadatan litosfer yang lama relatif terhadap astenosfer di bawahnya memungkinkan terjadinya penyusupan ke mantel yang dalam di zona subduksi sehingga menjadi sumber sebagian besar kekuatan penggerak pergerakan lempeng.

Kelemahan astenosfer memungkinkan lempeng untuk bergerak secara mudah menuju ke arah zona subduksi. Meskipun subduksi dipercaya sebagai kekuatan terkuat penggerak pergerakan lempeng, masih ada gaya penggerak lain yang dibuktikan dengan adanya lempeng seperti lempeng Amerika Utara, juga lempeng Eurasia yang bergerak tetapi tidak mengalami subduksi di manapun. Sumber penggerak ini masih menjadi topik penelitian intensif dan diskusi di kalangan ilmuwan ilmu bumi.

Pencitraan dua dan tiga dimensi interior bumi menunjukkan adanya distribusi kepadatan yang heterogen secara lateral di seluruh mantel. Variasi dalam kepadatan ini bisa bersifat material (dari kimia batuan), mineral (dari variasi struktur mineral), atau termal (melalui ekspansi dan kontraksi termal dari energi panas). Manifestasi dari keheterogenan kepadatan secara lateral adalah konveksi mantel dari gaya apung. Dengan satu atau lain cara, energi ini harus dipindahkan ke litosfer supaya lempeng tektonik bisa bergerak. Ada dua jenis gaya yang utama dalam pengaruhnya ke pergerakan planet, yaitu friksi dan gravitasi.

Lempeng-lempeng Utama Bumi

Lempeng-lempeng tektonik utama dan klasifikasinya yaitu:

Lempeng Afrika, meliputi Afrika - Lempeng benua
Lempeng Antarktika, meliputi Antarktika - Lempeng benua
Lempeng Australia, meliputi Australia (tergabung dengan Lempeng India antara 50 sampai 55 juta tahun yang lalu) - Lempeng benua
Lempeng Eurasia, meliputi Asia dan Eropa - Lempeng benua
Lempeng Amerika Utara, meliputi Amerika Utara dan Siberia timur laut - Lempeng benua
Lempeng Amerika Selatan, meliputi Amerika Selatan - Lempeng benua
Lempeng Pasifik, meliputi Samudera Pasifik - Lempeng samudera

Lempeng-lempeng penting lain yang lebih kecil mencakup Lempeng India, Lempeng Arabia, Lempeng Karibia, Lempeng Juan de Fuca, Lempeng Cocos, Lempeng Nazca, Lempeng Filipina, dan Lempeng Scotia.

Pergerakan lempeng telah menyebabkan pembentukan dan pemecahan benua seiring berjalannya waktu, termasuk juga pembentukan superkontinen yang mencakup hampir semua atau semua benua. Superkontinen Rodinia diperkirakan terbentuk 1 miliar tahun yang lalu dan mencakup hampir semua atau semua benua di Bumi dan terpecah menjadi delapan benua sekitar 600 juta tahun yang lalu. Delapan benua ini selanjutnya tersusun kembali menjadi superkontinen lain yang disebut Pangaea yang pada akhirnya juga terpecah menjadi Laurasia (yang menjadi Amerika Utara dan Eurasia), dan Gondwana (yang menjadi benua sisanya).

Referensi 

http://en.wikipedia.org/wiki/Plate_tectonics
http://www.ucmp.berkeley.edu/geology/tectonics.html
http://www.platetectonics.com/ 

Gunung Berapi




Gunung berapi secara umum adalah suatu sistem saluran fluida panas (batuan dalam wujud cair atau lava) yang memanjang dari kedalaman sekitar 10 km di bawah permukaan bumi sampai ke permukaan bumi, termasuk endapan hasil akumulasi material yang dikeluarkan pada saat meletus. Berdasarkan tempat pembentukannya selain gunung berapi yang terbentuk diatas daratan terdapat beberapa jenis gunung berapi yang memiliki bentuk berbeda yaitu, gunung berapi bawah laut dan gunung berapi es. Gunung berapi bawah laut merupakan gunung berapi yang terbentuk di dasar laut dan memiliki puncak yang berada di bawah permukaan air laut, gunung berapi es biasa terjadi di daerah yang mempunyai musim dingin bersalju seperti di daerah artic.

Gunung berapi terdapat di seluruh dunia, tetapi lokasi gunung berapi yang paling dikenali adalah gunung berapi yang berada di sepanjang busur Cincin Api Pasifik. Gunung berapi terdapat dalam beberapa bentuk sepanjang masa hidupnya. Gunung berapi yang aktif mungkin berubah menjadi separuh aktif, istirahat, sebelum akhirnya menjadi tidak aktif atau mati. Bagaimanapun gunung berapi mampu istirahat dalam waktu 610 tahun sebelum berubah menjadi aktif kembali. Oleh karena itu, sulit untuk menentukan keadaan sebenarnya daripada suatu gunung berapi itu, apakah gunung berapi itu berada dalam keadaan istirahat atau telah mati.

Apabila gunung berapi meletus, magma yang terkandung di dalam kamar magmar di bawah gunung berapi meletus keluar sebagai lahar atau lava. Selain daripada aliran lava, kehancuran oleh gunung berapi disebabkan melalui berbagai cara seperti berikut:

•Aliran lava.
•Letusan gunung berapi.
•Aliran lumpur.
•Abu.
•Kebakaran hutan.
•Gas beracun.
•Gelombang tsunami.
•Gempa bumi.

Bagian-bagian dari gunung berapi



Gunung berapi terdiri dari beberapa bagian sebagai berikut:

•Kawah utama
Merupakan lubang pelepasan tempat keluarnya magma dari dalam tubuh gunung

•Lava
Batuan cair dengan temperature 700 0c yang keluar dari tubuh gunung berapi dan mengalir menuruni lereng gunung.

•Kamar magma 
Merupakan kolam batuan cair yang berada di bawah permukaan bumi, kerapatan batuan di dalam kamar magma lebih renggang daripada batuan mantel sekitarnya. Saat magma mengalir keluar melalui celah mantel dan sampai di permukaan maka erupsi akan terjadi.

• Kawah sekunder
Merupakan kawah yang terbentuk di sekitar kawah utama pada gunung berapi besar.

•Crater
Merupakan depresi menyerupai lingkaran pada permukaan tanah akibat aktivitas vulkanis yang terjadi di bawah kawah.

•Aliran piroklastik
Terdiri atas gas dan batuan panas yang meluncur yang meluncur dengan cepat menuruni lereng gunung berapi. Suhu gas dapat mencapai 10000 c dengan kecepatan hingga 700km/jam.

•Awan abu
Terdiri atas batuan lumat dan kaca yang terbentuk pada saat erupsi. Berukuran kecil dan bersuhu sangat panas, awan abu ini dapat terbawa oleh udara hingga radius beberapa kilometer.

•Cone
Merupakan bagian gunung yang berbetuk seperti kerucut yang tercipta dari aliran lava pada lereng yang keluar dari kawah dan mengalami pendinginan.

Jenis-jenis Gunung Berapi Berdasarkan Bentuknya

1.Stratovolcano

Tersusun dari batuan hasil letusan dengan tipe letusan berubah-ubah sehingga dapat menghasilkan susunan yang berlapis-lapis dari beberapa jenis batuan, sehingga membentuk suatu kerucut besar (raksasa), kadang-kadang bentuknya tidak beraturan, karena letusan terjadi sudah beberapa ratus kali. Gunung Merapi merupakan jenis ini.

2.Perisai

Tersusun dari batuan aliran lava yang pada saat diendapkan masih cair, sehingga tidak sempat membentuk suatu kerucut yang tinggi (curam), bentuknya akan berlereng landai, dan susunannya terdiri dari batuan yang bersifat basaltik. Contoh bentuk gunung berapi ini terdapat di kepulauan Hawai.

3.Cinder Cone

Merupakan gunung berapi yang abu dan pecahan kecil batuan vulkaniknya menyebar di sekeliling gunung. Sebagian besar gunung jenis ini membentuk mangkuk di puncaknya. Jarang yang tingginya di atas 500 meter dari tanah di sekitarnya.

4.Kaldera

Gunung berapi jenis ini terbentuk dari ledakan yang sangat kuat yang melempar ujung atas gunung sehingga membentuk cekungan. Gunung Bromo merupakan jenis ini.

Referensi 

Proses Lahirnya Gunung Berapi




Di dalam lapisan selimut bumi tersebut terdapat lapisan yang dikenal dengan astenosfer (asthenosphere) yang bersifat cair kental dengan suhu mencapai ribuan derajat celcius. Lempeng-lempeng tektonik bumi bergerak mengambang di atas cairan astenosfer yang kental dan panas dan selalu berinteraksi satu sama lain. Kecepatan pergerakan lempeng-lempeng bumi ini antara 1 centimeter sampai dengan 13 centimeter setiap tahunnya dengan arah tertentu untuk setiap lempengnya.

Pertemuan antara lempeng-lempeng tektonik tesebut dapat berupa subduksi (penunjaman), seperti antara lempeng Indo-Australia yang menunjam ke lempeng Eurasia, atau saling tarik menarik (divergensi), atau saling bergeser. Daerah penunjaman dua lempeng bumi inilah yang disebut dengan zona subduksi. Daerah batas antar lempeng ditandai dengan adanya palung, punggungan samudera (deretan gunung dan pegunungan di laut) dan pengunungan yang sejajar pantai yang tercipta akibat proses subduksi lempeng tektonik, seperti pegunungan Bukit Barisan di Sumatera. 

Pada saat proses subduksi terjadi, lempeng tektonik yang memiliki massa lebih ringan akan terangkat naik ke atas dan membentuk dataran tinggi serta gunung sedangkan lempeng tektonik yang memiliki massa lebih berat akan menghujam ke dalam astenosfer. Lempeng tektonik yang menghujam astenosfer tersebut akan mengalami tekanan dan pemanasan dengan suhu yang sangat tinggi sehingga mengalami pelelehan. Beberapa dari batuan lempeng tektonik yang meleleh atau disebut juga magma tersebut akan naik ke atas, kembali ke permukaan bumi. Pada saat proses naik ke atas ini magma tersebut juga akan melelehkan kerak bumi yang dilewatinya. Pada saat magma tersebut mencapai permukaan sebuah gunung berapi akan terbentuk dan akan terus melakukan aktivitas vulkanik selama di dalamnya masih terdapat aliran magma.

Dalam perjalanannya seiring dengan waktu tumbukan antar lempeng tektonik tersebut akan terus berlanjut. Seiring dengan berlanjutnya proses subduksi antar lempeng tersebut maka jumlah magma yang berada di dalam gunung berapi pun akan semakin meningkat. Selain mengalami peningkatan magma, di daerah pertemuan antar lempeng bumi pada waktu tertentu akan terjadi penumpukkan energi akibat tekanan antar lempeng yang menyebabkan instabilitas. Karena bebatuan pada daerah tersebut tidak mampu lagi menahan tekanan, maka bebatuan tersebut bisa patah sambil melepaskan energi. Pelepasan energi tersebut menjalar ke permukaan bumi dengan gelombang vertical dan horizontal yang menggoyangkan semua yang ada di permukaan bumi. Inilah yang kemudian kita rasakan sebagai goncangan besar atau gempa bumi. Selain menyebabkan instabilitas pada permukaan bumi, tekanan akibat tumbukan antar lempeng tersebut juga akan menekan aliran magma di perut bumi sehingga menyebabkan peningkatan aliran magma.

Akibat peningkatan aliran magma tersebut maka jumlah aliran magma yang naik ke permukaan bumi pun juga akan mengalami peningkatan. Peningkatan aliran magma ke permukaan bumi tersebut akan menyebabkan peningkatan aktivitas vulkasnis pada gunung berapi yang dapat muncul dalam berbagai bentuk. Salah satu bentuk peningkatan aktivitas vulkanis tersebut dapat berupa erupsi gunung berapi. 

Referensi 

Selasa, 02 November 2010

Light Emiting Diode (LED)

LED

Dioda cahaya atau lebih dikenal dengan sebutan LED (Light Emiting Diode) adalah suatu semikonduktor yang memancarkan cahaya monokromatik yang tidak koheren ketika diberi tegangan maju.

Fungsi Fisikal

Sebuah LED adalah sejenis dioda semikonduktor istimewa. Seperti sebuah dioda normal, LED terdiri dari sebuah chip bahan semikonduktor yang diisi penuh, atau di-dop, dengan ketidakmurnian untuk menciptakan sebuah struktur yang disebut p-n junction. Pembawa-muatan - elektron dan lubang mengalir ke junction dari elektroda dengan voltase berbeda. Ketika elektron bertemu dengan lubang, dia jatuh ke tingkat energi yang lebih rendah, dan melepas energi dalam bentuk photon.

Emisi Cahaya

Panjang gelombang dari cahaya yang dipancarkan, dan oleh karena itu warnanya, tergantung dari selisih pita energi dari bahan yang membentuk p-n junction. Sebuah dioda normal, biasanya terbuat dari silikon atau germanium, memancarkan cahaya tampak inframerah dekat, tetapi bahan yang digunakan untuk sebuah LED memiliki selisih pita energi antara cahaya inframerah dekat, tampak, dan ultraungu dekat.

Polarisasi

Tak seperti lampu pijar dan neon, LED mempunyai kecenderungan polarisasi. Chip LED mempunyai kutub positif dan negatif (p-n) dan hanya akan menyala bila diberikan arus maju. Ini dikarenakan LED terbuat dari bahan semikonduktor yang hanya akan mengizinkan arus listrik mengalir ke satu arah dan tidak ke arah sebaliknya. Bila LED diberikan arus terbalik, hanya akan ada sedikit arus yang melewati chip LED. Ini menyebabkan chip LED tidak akan mengeluarkan emisi cahaya.
Chip LED pada umumnya mempunyai tegangan rusak yang relatif rendah. Bila diberikan tegangan beberapa volt ke arah terbalik, biasanya sifat isolator searah LED akan jebol menyebabkan arus dapat mengalir ke arah sebaliknya.

Tegangan maju

Karakteristik chip LED pada umumnya adalah sama dengan karakteristik dioda yang hanya memerlukan tegangan tertentu untuk dapat beroperasi. Namun bila diberikan tegangan yang terlalu besar, LED akan rusak walaupun tegangan yang diberikan adalah tegangan maju. Tegangan yang diperlukan sebuah dioda untuk dapat beroperasi adalah tegangan maju (Vf).

Sirkuit LED

Sirkuit LED dapat didesain dengan cara menyusun LED dalam posisi seri maupun paralel. Bila disusun secara seri, maka yang perlu diperhatikan adalah jumlah tegangan yang diperlukan seluruh LED dalam rangkaian tadi. Namun bila LED diletakkan dalam keadaan paralel, maka yang perlu diperhatikan menjadi jumlah arus yang diperlukan seluruh LED dalam rangkaian ini.
Menyusun LED dalam rangkaian seri akan lebih sulit karena tiap LED mempunyai tegangan maju (Vf) yang berbeda. Perbedaan ini akan menyebabkan bila jumlah tegangan yang diberikan oleh sumber daya listrik tidak cukup untuk membangkitkan chip LED, maka beberapa LED akan tidak menyala. Sebaliknya, bila tegangan yang diberikan terlalu besar akan berakibat kerusakan pada LED yang mempunyai tegangan maju relatif rendah.
Pada umumnya, LED yang ingin disusun secara seri harus mempunyai tegangan maju yang sama atau paling tidak tak berbeda jauh supaya rangkaian LED ini dapat bekerja secara baik.

Substrat LED

Pengembangan LED dimulai dengan alat inframerah dan merah dibuat dengan gallium arsenide. Perkembagan dalam ilmu material telah memungkinkan produksi alat dengan panjang gelombang yang lebih pendek, menghasilkan cahaya dengan warna bervariasi. LED konvensional terbuat dari mineral inorganik yang bervariasi, menghasilkan warna sebagai berikut:
• aluminium gallium arsenide (AlGaAs) - merah dan inframerah
• gallium aluminium phosphide - hijau
• gallium arsenide/phosphide (GaAsP) - merah, oranye-merah, oranye, dan kuning
• gallium nitride (GaN) - hijau, hijau murni (atau hijau emerald), dan biru
• gallium phosphide (GaP) - merah, kuning, dan hijau
• zinc selenide (ZnSe) - biru
• indium gallium nitride (InGaN) - hijau kebiruan dan biru
• indium gallium aluminium phosphide - oranye-merah, oranye, kuning, dan hijau
• silicon carbide (SiC) - biru
• diamond (C) - ultraviolet
• silicon (Si) - biru (dalam pengembangan)
• sapphire (Al2O3) - biru

LED biru dan putih



Sebuah GaN LED ultraviolet

LED biru pertama yang dapat mencapai keterangan komersial menggunakan substrat galium nitrida yang ditemukan oleh Shuji Nakamura tahun 1993 sewaktu berkarir di Nichia Corporation di Jepang. LED ini kemudian populer di penghujung tahun 90-an. LED biru ini dapat dikombinasikan ke LED merah dan hijau yang telah ada sebelumnya untuk menciptakan cahaya putih.
LED dengan cahaya putih sekarang ini mayoritas dibuat dengan cara melapisi substrat galium nitrida (GaN) dengan fosfor kuning. Karena warna kuning merangsang penerima warna merah dan hijau di mata manusia, kombinasi antara warna kuning dari fosfor dan warna biru dari substrat akan memberikan kesan warna putih bagi mata manusia.
LED putih juga dapat dibuat dengan cara melapisi fosfor biru, merah dan hijau di substrat ultraviolet dekat yang lebih kurang sama dengan cara kerja lampu fluoresen.
Metode terbaru untuk menciptakan cahaya putih dari LED adalah dengan tidak menggunakan fosfor sama sekali melainkan menggunakan substrat seng selenida yang dapat memancarkan cahaya biru dari area aktif dan cahaya kuning dari substrat itu sendiri.

Keuntungan Menggunakan LED

1. Tegangan operasi yang rendah.
2. Umur penggunaan yang panjang.
3. Penyaklaran (switching) sambung-putus (on-off) yang cepat.

Referensi 

 http://id.wikipedia.org/wiki/Dioda_cahaya
 Malvino. 1985. Aproksimasi Rangkaian Semi Konduktor. Jakarta: Erlangga.

Seven Segment

Pengertian Seven Segmen
Seven Segment adalah suatu segmen-segmen yang digunakan menampilkan angka. Seven segment ini tersusun atas 7 batang led yang disusun membentuk angka 8 dengan menggunakan huruf a s/d g yang disebut dot matrix. Setiap segmen ini terdiri dari 1 atau 2 Light Emitting Diode ( LED ). Seven Segment merupakan gabungan dari 7 buah LED (Light Emitting Diode) yang dirangkaikan membentuk suatu tampilan angka seperti yang terlihat pada gambar di bawah ini.








A typical 7-segment LED display component, with decimal point.



The individual segments of a seven-segment display.

Prinsip Kerja
Prinsip kerja seven segmen ialah input biner pada switch dikonversikan masuk ke dalam decoder, baru kemudian decoder mengkonversi bilangan biner tersebut menjadi decimal, yang nantinya akan ditampilkan pada seven segment. Prinsip kerja seven segment ialah input biner pada switch dikonversikan masuk ke dalam decoder, baru kemudian decoder mengkonversi bilangan biner tersebut menjadi decimal, yang nantinya akan ditampilkan pada seven segment.



Pada rangkaian tersebut dapat anda perhatikan bagian seven segmen, karena seven segmen yang digunakan adalah common anoda, maka segmen tersebut dapat nyala apabila mendapat logika '0' pada bagian katoda. Dengan kata lain untuk menghidupkan seven segmen yang terkoneksi ke mikrokontroler port paralel maka harus dioutputkan logika '0'.Sehingga pada contoh tersebut, agar dapat ditampilkan angka 3 pada seven segmen maka port P0 harus mengeluarkan data 00110000b. Untuk angka SATU (1) maka satu sisi yang aktif dengan 2 segment yaitu b dan c. Untuk angka NOL (0) maka empat sisi yang aktif dengan 6 segment yaitu a,b,c,d,e dan f.
Tabel berikut ini memberikan bilangan hexadecimal untuk menampilakan angka 0 sampai 9:

Digit gfedcba abcdefg  a  b   c   d  e    f   G
0       0x3F     0x7E   on on on on on on Off
1       0x06      0x30  off on on off off off Off
2       0x5B     0x6D  on on off on on off On
3       0x4F      0x79  on on on on off off On
4       0x66      0x33  off on on off off on On
5       0x6D     0x5B  on off on on off on On
6       0x7D     0x5F  on off on on on on On
7       0x07      0x70  on on on off off off off
8       0x7F      0x7F on on on on on on on
9      0x6F      0x7B on on on on off on on


Jenis-Jenis Seven Segment

Seven segmen, merupakan sekumpulan LED yang dibangun sedemikian rupa sehingga menyerupai digit, seven segmen ada dua macam: common anoda dan common katoda.
1. COMMON ANODA
Disini, semua anoda dari diode disatukan secara parallel dan semua itu dihubungkan ke VCC dan kemudian LED dihubungkan melalui tahanan pembatas arus keluar dari penggerak. Karena dihubungkan ke VCC, maka COMMON ANODA ini berada pada kondisi AKTIF HIGH.
2. COMMON KATODA
Disini semua katoda disatukan secara parallel dan dihubungkan ke GROUND. Karena seluruh katoda dihubungkan ke GROUND, maka COMMON KATODA ini berada pada kondisi AKTIF LOW.

Seven Segment terdiri dari 2 jenis, yaitu Common Katode (kaki katoda dihubungkan bersama) dan Common Anode (kaki anoda dihubungkan bersama).




Penyusun dari COMMON
1. Decoder yaitu suatu alat yang berfungsi mengubah/ mengkoversi input bilangan biner menjadi decimal.
2. Encoder yaitu suatu alat yang berfungsi mengubah/ mengkoversi input bilangan desimal menjadi biner.
3. Multiplexer adalah Suatu rangkaian kombinasi yang ouputnya mempunyai logika sama dengan jalur input yang ditunjuk pada selector. Multiplexer ini memiliki banyak input dan memiliki satu output. Prinsip kerjanya sama dengan saklar pemilih dai 2n buah inputdipilih melalui n buah jalur pemilih (DATA SELECT).
4. Demultiplexer adalah suatu rangkain kombinasi yang bersifat berkebalikan dari multiplexer. Rangkaian ini memiliki satu input dan memiliki banyak keluaran (output). Rangkaian ini akan menghasilkan output high (1) pada jalur yang sesuai dengan yang ditunjuk oleh selector.

Referensi 

http://elektronika-elektronika.blogspot.com/2007/02/menuliskan-angka-atau-huruf-ke-7-segmen.html
http://haniifa.wordpress.com/2009/08/


Malvino. 1985. Aproximasi Rangkaian Semikonduktor. Jakarta: Eralangga.